A hybrid geometric + algebraic multigrid method with semi-iterative smoothers

نویسندگان

  • Cao Lu
  • Xiangmin Jiao
  • Nikolaos M. Missirlis
چکیده

We propose a multigrid method for solving large-scale sparse linear systems arising from discretizations of partial differential equations, such as those from finite element and generalized finite difference (GFD) methods. Our proposed method has the following two characteristics. First, we introduce a hybrid geometric+algebraic multigrid method, or HyGA, to leverage the rigor, accuracy and efficiency of geometric multigrid (GMG) for hierarchical unstructured meshes, with the flexibility of algebraic multigrid (AMG). Second, we introduce efficient smoothers based on the Chebyshev-Jacobi method for both symmetric and asymmetric matrices. We also introduce a unified derivation of restriction and prolongation operators for weighted residual formulations over unstructured hierarchical meshes, and apply it to both finite element and generalized finite difference methods. We present numerical results of our method for Poisson equations in both 2-D and 3-D, and compare our method against the classical GMG and AMG as well as Krylovsubspace methods. Copyright c © 2013 John Wiley & Sons, Ltd.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Mixed Finite Element Multigrid Method for Stokes Equations

The stable finite element discretization of the Stokes problem produces a symmetric indefinite system of linear algebraic equations. A variety of iterative solvers have been proposed for such systems in an attempt to construct efficient, fast, and robust solution techniques. This paper investigates one of such iterative solvers, the geometric multigrid solver, to find the approximate solution o...

متن کامل

On the use of relaxation parameters in hybrid smoothers

The use of relaxation parameters in hybrid smoothers within algebraic multigrid (AMG) is analyzed both theoretically and practically. Relaxation parameters that are optimal under the assumptions of the theory are determined. The implementation of a procedure to automatically determine outer relaxation parameters for symmetric positive definite smoothers is described. Numerical results are prese...

متن کامل

Mixed-Precision GPU-Multigrid Solvers with Strong Smoothers

• Sparse iterative linear solvers are the most important building block in (implicit) schemes for PDE problems • In FD, FV and FE discretisations • Lots of research on GPUs so far for Krylov subspace methods, ADI approaches and multigrid • But: Limited to simple preconditioners and smoothing operators •Numerically strong smoothers exhibit inherently sequential data dependencies (impossible to p...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Numerical Lin. Alg. with Applic.

دوره 21  شماره 

صفحات  -

تاریخ انتشار 2014